Extensions 1→N→G→Q→1 with N=C3×SD16 and Q=C22

Direct product G=N×Q with N=C3×SD16 and Q=C22
dρLabelID
C2×C6×SD1696C2xC6xSD16192,1459

Semidirect products G=N:Q with N=C3×SD16 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×SD16)⋊1C22 = S3×C8⋊C22φ: C22/C1C22 ⊆ Out C3×SD16248+(C3xSD16):1C2^2192,1331
(C3×SD16)⋊2C22 = D84D6φ: C22/C1C22 ⊆ Out C3×SD16488-(C3xSD16):2C2^2192,1332
(C3×SD16)⋊3C22 = D85D6φ: C22/C1C22 ⊆ Out C3×SD16488+(C3xSD16):3C2^2192,1333
(C3×SD16)⋊4C22 = D86D6φ: C22/C1C22 ⊆ Out C3×SD16488-(C3xSD16):4C2^2192,1334
(C3×SD16)⋊5C22 = S3×C8.C22φ: C22/C1C22 ⊆ Out C3×SD16488-(C3xSD16):5C2^2192,1335
(C3×SD16)⋊6C22 = D24⋊C22φ: C22/C1C22 ⊆ Out C3×SD16488+(C3xSD16):6C2^2192,1336
(C3×SD16)⋊7C22 = C24.C23φ: C22/C1C22 ⊆ Out C3×SD16488+(C3xSD16):7C2^2192,1337
(C3×SD16)⋊8C22 = C2×Q83D6φ: C22/C2C2 ⊆ Out C3×SD1648(C3xSD16):8C2^2192,1318
(C3×SD16)⋊9C22 = C2×D4.D6φ: C22/C2C2 ⊆ Out C3×SD1696(C3xSD16):9C2^2192,1319
(C3×SD16)⋊10C22 = SD16⋊D6φ: C22/C2C2 ⊆ Out C3×SD16484(C3xSD16):10C2^2192,1327
(C3×SD16)⋊11C22 = D815D6φ: C22/C2C2 ⊆ Out C3×SD16484+(C3xSD16):11C2^2192,1328
(C3×SD16)⋊12C22 = C2×S3×SD16φ: C22/C2C2 ⊆ Out C3×SD1648(C3xSD16):12C2^2192,1317
(C3×SD16)⋊13C22 = C2×Q8.7D6φ: C22/C2C2 ⊆ Out C3×SD1696(C3xSD16):13C2^2192,1320
(C3×SD16)⋊14C22 = SD1613D6φ: C22/C2C2 ⊆ Out C3×SD16484(C3xSD16):14C2^2192,1321
(C3×SD16)⋊15C22 = S3×C4○D8φ: C22/C2C2 ⊆ Out C3×SD16484(C3xSD16):15C2^2192,1326
(C3×SD16)⋊16C22 = D811D6φ: C22/C2C2 ⊆ Out C3×SD16484(C3xSD16):16C2^2192,1329
(C3×SD16)⋊17C22 = C6×C8⋊C22φ: C22/C2C2 ⊆ Out C3×SD1648(C3xSD16):17C2^2192,1462
(C3×SD16)⋊18C22 = C6×C8.C22φ: C22/C2C2 ⊆ Out C3×SD1696(C3xSD16):18C2^2192,1463
(C3×SD16)⋊19C22 = C3×D8⋊C22φ: C22/C2C2 ⊆ Out C3×SD16484(C3xSD16):19C2^2192,1464
(C3×SD16)⋊20C22 = C3×D4○D8φ: C22/C2C2 ⊆ Out C3×SD16484(C3xSD16):20C2^2192,1465
(C3×SD16)⋊21C22 = C3×D4○SD16φ: C22/C2C2 ⊆ Out C3×SD16484(C3xSD16):21C2^2192,1466
(C3×SD16)⋊22C22 = C6×C4○D8φ: trivial image96(C3xSD16):22C2^2192,1461

Non-split extensions G=N.Q with N=C3×SD16 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×SD16).C22 = SD16.D6φ: C22/C1C22 ⊆ Out C3×SD16968-(C3xSD16).C2^2192,1338
(C3×SD16).2C22 = D8.10D6φ: C22/C2C2 ⊆ Out C3×SD16964-(C3xSD16).2C2^2192,1330
(C3×SD16).3C22 = C3×Q8○D8φ: C22/C2C2 ⊆ Out C3×SD16964(C3xSD16).3C2^2192,1467

׿
×
𝔽